Catalogue

Record Details

Catalogue Search



Design and analysis of connections in steel structures : fundamentals and examples  Cover Image Book Book

Design and analysis of connections in steel structures : fundamentals and examples / Alfredo Boracchini.

Record details

  • ISBN: 9783433031223 (Paperback)
  • ISBN: 3433031223 (Paperback)
  • Physical Description: xxiv, 356 pages : illustrations ; 25 cm
  • Publisher: Berlin, Germany : Ernst & Sohn, a Wiley Brand, [2018]

Content descriptions

Bibliography, etc. Note:
Includes bibliographical references and index.
Subject: Steel, Structural > Welding.
Bridges > Design and construction.
Iron and steel bridges > Design and construction.

Available copies

  • 1 of 1 copy available at Vancouver Community College.

Holds

  • 0 current holds with 1 total copy.
Show Only Available Copies
Location Call Number / Copy Notes Barcode Shelving Location Circulation Modifier Holdable? Status Due Date Courses
Downtown Library TA 684 B65 2018 (Text) 33109010369197 Stacks Volume hold Available -

Acknowledgments xxi
List of Abbreviations xxiii
1 Fundamental Concepts of Joints in Design of Steel Structures 1(12)
1.1 Pin Connections and Moment Resisting Connections
1(7)
1.1.1 Safety, Performance, and Costs
1(1)
1.1.2 Lateral Load Resisting System
2(5)
1.1.3 Pins and Fully Restrained Joints in the Analysis Model
7(1)
1.2 Plastic Hinge
8(4)
1.2.1 Base Plates
9(2)
1.2.2 Trusses
11(1)
References
12(1)
2 Fundamental Concepts of the Behavior of Steel Connections 13(18)
2.1 Joint Classifications
13(1)
2.2 Forces in the Calculation Model and for the Connection
14(3)
2.3 Actions Proportional to Stiffness
17(1)
2.4 Ductility
18(1)
2.5 Load Path
19(1)
2.6 Ignorance of the Load Path
20(1)
2.7 Additional Restraints
21(1)
2.8 Methods to Define Ultimate Limit States in Joints
21(1)
2.9 Bolt Resistance
22(1)
2.10 Yield Line
22(1)
2.11 Eccentric Joints
22(1)
2.12 Economy, Repetitiveness, and Simplicity
22(1)
2.13 Man-hours and Material Weight
23(1)
2.14 Diffusion Angles
23(1)
2.15 Bolt Pretensioning and Effects on Resistance
24(1)
2.15.1 Is Resistance Affected by Pretensioning?
24(1)
2.15.2 Is Pretensioning Necessary?
24(1)
2.15.3 Which Pretensioning Method Should Be Used?
25(1)
2.16 Transfer Forces
25(1)
2.17 Behavior of a Bolted Shear Connection
25(2)
2.18 Behavior of Bolted Joints Under Tension
27(2)
References
29(2)
3 Limit States for Connection Components 31(82)
3.1 Deformation Capacity (Rotation) and Stiffness
31(2)
3.1.1 Rotational Stiffness
32(1)
3.2 Inelastic Deformation due to Bolt Hole Clearance
33(1)
3.3 Bolt Shear Failure
34(6)
3.3.1 Threads Inside the Shear Plane
35(2)
3.3.2 Number of Shear Planes
37(1)
3.3.3 Packing Plates
37(1)
3.3.4 Long Joints
38(1)
3.3.5 Anchor Bolts
39(1)
3.3.6 Stiffness Coefficient
39(1)
3.4 Bolt Tension Failure
40(2)
3.4.1 Countersunk Bolts
41(1)
3.4.2 Stiffness Coefficient
41(1)
3.5 Bolt Failure in Combined Shear and Tension
42(1)
3.6 Slip-Resistant Bolted Connections
42(2)
3.6.1 Combined Shear and Tension
44(1)
3.7 Bolt Bearing and Bolt Tearing
44(5)
3.7.1 Countersunk Bolts
49(1)
3.7.2 Stiffness Coefficients
49(1)
3.8 Block Shear (or Block Tearing)
49(3)
3.9 Failure of Welds
52(9)
3.9.1 Weld Calculation Procedures
54(4)
3.9.1.1 Directional Method
54(3)
3.9.1.2 Simplified Method
57(1)
3.9.2 Tack Welding (Intermittent Fillet Welds)
58(1)
3.9.3 Eccentricity
58(1)
3.9.4 Fillet Weld Groups
58(2)
3.9.5 Welding Methods
60(1)
3.9.6 Inspections
60(1)
3.9.6.1 Visual Testing
60(1)
3.9.6.2 Penetrant Testing
60(1)
3.9.6.3 Magnetic Particle Testing
60(1)
3.9.6.4 Radiographic Testing
60(1)
3.9.6.5 Ultrasonic Testing
61(1)
3.10 T-stub, Prying Action
61(21)
3.10.1 T-stub with Prying Action
62(2)
3.10.2 Possible Simplified Approach According to AISC
64(1)
3.10.3 Backing Plates
65(1)
3.10.4 Length Limit for Prying Forces and T-stub without Prying
66(1)
3.10.5 T-stub Design Procedure for Various "Components" According to Eurocode
67(4)
3.10.5.1 Column Flange
67(4)
3.10.5.2 End Plate
71(1)
3.10.5.3 Angle Flange Cleat
71(1)
3.10.6 T-stub Design Procedure for Various "Components" According to the "Green Book"
71(10)
3.10.6.1 leff for Equivalent T-stubs for Bolt Row Acting Alone
74(3)
3.10.6.2 leff to Consider for a Bolt Row Acting Alone
77(2)
3.10.6.3 leff to Consider for Bolt Rows Acting in Group
79(1)
3.10.6.4 Examples of leff for Bolts in a Group
80(1)
3.10.7 T-stub for Bolts Outside the Beam Flanges
81(1)
3.10.8 Stiffness Coefficient
81(1)
3.11 Punching
82(1)
3.12 Equivalent Systems
82(1)
3.13 Web Panel Shear
82(2)
3.13.1 Stiffness Coefficient
84(1)
3.14 Web in Transverse Compression
84(4)
3.14.1 Transformation Parameter β
86(1)
3.14.2 Formulas for Other Local Buckling Limit States
87(1)
3.14.3 Stiffness Coefficient
88(1)
3.14.4 T-stub in Compression
88(1)
3.15 Web in Transverse Tension
88(1)
3.15.1 Stiffness Coefficient
89(1)
3.16 Flange and Web in Compression
89(1)
3.17 Beam Web in Tension
89(1)
3.18 Plate Resistance
90(3)
3.18.1 Material Properties
90(1)
3.18.2 Tension
90(2)
3.18.2.1 Staggered Bolts
92(1)
3.18.3 Compression
92(1)
3.18.4 Shear
92(1)
3.18.5 Bending
93(1)
3.18.6 Design for Combined Forces
93(1)
3.18.7 Whitmore Section
93(1)
3.19 Reduced Section of Connected Profiles
93(6)
3.19.1 Shear Lag
95(4)
3.20 Local Capacity
99(1)
3.21 Buckling of Connecting Plates
100(3)
3.21.1 Gusset Plate Buckling
100(1)
3.21.2 Fin Plate (Shear Tab) Buckling
101(2)
3.22 Structural Integrity (and Tie Force)
103(2)
3.23 Ductility
105(1)
3.24 Plate Lamellar Tearing
106(2)
3.25 Other Limit States in Connections with Sheets and Cold-formed Steel Sections
108(1)
3.26 Fatigue
108(1)
3.27 Limit States of Other Materials in the Connection
109(1)
References
109(4)
4 Connection Types: Analysis and Calculation Examples 113(136)
4.1 Common Symbols
113(2)
4.1.1 Materials
113(1)
4.1.2 Design Forces
113(1)
4.1.3 Bolts
113(1)
4.1.4 Geometric Characteristics of Plates and Profiles
114(1)
4.2 Eccentrically Loaded Bolt Group: Eccentricity in the Plane of the Faying Surface
115(5)
4.2.1 Elastic Method
115(3)
4.2.1.1 Example of Eccentricity Calculated with Elastic Method
116(2)
4.2.2 Instantaneous Center-of-Rotation Method
118(2)
4.2.2.1 Example of Eccentricity Calculated with the Instantaneous Center-of-Rotation Method
119(1)
4.3 Eccentrically Loaded Bolt Group: Eccentricity Normal to the Plane of the Faying Surface
120(5)
4.3.1 Neutral Axis at Center of Gravity
121(2)
4.3.1.1 Example of Eccentricity Normal to Plane Calculated with Neutral Axis at Center-of-Gravity Method
122(1)
4.3.2 Neutral Axis Not at Center of Gravity
123(2)
4.3.2.1 Example of Eccentricity Normal to Plane Calculate&with Neutral Axis not at Center-of-Gravity Method
124(1)
4.4 Base Plate with Cast Anchor Bolts
125(28)
4.4.1 Plate Thickness
125(10)
4.4.1.1 AISC Method
125(5)
4.4.1.2 Eurocode Method
130(5)
4.4.2 Contact Pressure
135(4)
4.4.2.1 AISC Method
135(1)
4.4.2.2 Eurocode Method
136(3)
4.4.3 Anchor Bolts in Tension
139(3)
4.4.3.1 AISC Method
139(1)
4.4.3.2 Eurocode Method
140(1)
4.4.3.3 Other Notes
141(1)
4.4.4 Welding
142(1)
4.4.5 Shear Resistance
142(2)
4.4.5.1 Friction
142(1)
4.4.5.2 Anchor Bolts in Shear
143(1)
4.4.5.3 Shear Lugs
144(1)
4.4.6 Rotational Stiffness
144(1)
4.4.7 Measures to Improve Ductility
145(1)
4.4.8 Practical Details and Other Notes
145(3)
4.4.9 Fully Restrained Schematization of Column Base Detail
148(1)
4.4.10 Example of Base Plate Design According to Eurocode
149(5)
4.4.10.1 Uplift and Moment
149(3)
4.4.10.2 Shear
152(1)
4.4.10.3 Welding
153(1)
4.4.10.4 Joint Stiffness
153(1)
4.4.10.5 Comparison with AISC Method for SLU1
153(1)
4.5 Chemical or Mechanical Anchor Bolts
153(1)
4.6 Fin Plate/Shear Tab
154(15)
4.6.1 Choices and Possible Variants
155(6)
4.6.1.1 Pin Position
155(1)
4.6.1.2 Location of Plate Welded to Primary Member
156(1)
4.6.1.3 Notches (Copes) in Secondary Member
157(1)
4.6.1.4 Reinforcing Beam Web
158(3)
4.6.2 Limit States to Be Considered
161(1)
4.6.3 Rotation Capacity
161(1)
4.6.4 Measures to Improve Ductility
162(1)
4.6.5 Measures to Improve Structural Integrity
162(1)
4.6.6 Design Example According to DIN
162(7)
4.6.6.1 Bolt Shear
163(2)
4.6.6.2 Bearing
165(1)
4.6.6.3 Block Shear
166(1)
4.6.6.4 Plate Resistance
167(1)
4.6.6.5 Beam Resistance
167(1)
4.6.6.6 Plate Buckling
168(1)
4.6.6.7 Local Check for Primary-Beam Web
168(1)
4.6.6.8 Welding
168(1)
4.6.6.9 Rotation Capacity
169(1)
4.6.6.10 Ductility
169(1)
4.6.6.11 Structural Integrity
169(1)
4.7 Double-Bolted Simple Plate
169(6)
4.7.1 Rotation Capacity
170(1)
4.7.2 Ductility
170(1)
4.7.3 Structural Integrity
171(1)
4.7.4 Beam-to-Beam Example Designed According to Eurocode
171(4)
4.7.4.1 Bolt Shear
172(1)
4.7.4.2 Bearing
173(1)
4.7.4.3 Block Shear
174(1)
4.7.4.4 Plate Resistance
174(1)
4.7.4.5 Beam Resistance
174(1)
4.7.4.6 Plate Buckling
174(1)
4.7.4.7 Primary-Beam Web Local Check
174(1)
4.7.4.8 Welding, Ductility, and Structural Integrity
174(1)
4.8 Shear ("Flexible") End Plate
175(6)
4.8.1 Variants and Rotation Capacity
175(2)
4.8.2 Limit States to be Considered
177(1)
4.8.3 Rotational Stiffness
177(1)
4.8.4 Ductility
178(1)
4.8.5 Structural Integrity
178(1)
4.8.6 Column-to-Beam Example Designed According to IS 800
178(3)
4.8.6.1 Bolt Resistance
179(1)
4.8.6.2 Rotation Capacity and Structural Integrity
179(1)
4.8.6.3 Bearing
180(1)
4.8.6.4 Block Shear
180(1)
4.8.6.5 Plate Check
180(1)
4.8.6.6 Beam Shear Check
180(1)
4.8.6.7 Column Resistance
180(1)
4.8.6.8 Welds
181(1)
4.8.6.9 Conclusion
181(1)
4.9 Double-Angle Connection
181(5)
4.9.1 Variants
183(1)
4.9.2 Limit States to Be Considered
183(1)
4.9.3 Structural Integrity, Ductility, and Rotation Capacity
183(1)
4.9.4 Practical Advice
183(1)
4.9.5 Beam-to-Beam Example Designed According to AISC
184(2)
4.10 Connections in Trusses
186(2)
4.10.1 Intermediate Connections for Compression Members
186(2)
4.11 Horizontal End Plate Leaning on a Column
188(1)
4.11.1 Limit States to be Considered
189(1)
4.12 Rigid End Plate
189(23)
4.12.1 Column Web Panel Shear
191(1)
4.12.2 Lever Arm
191(1)
4.12.3 Stiffeners
192(1)
4.12.4 Supplementary Web Plate Check
193(1)
4.12.5 Check for Column Stiffeners in Compression Zone
193(2)
4.12.6 Check for Column Stiffeners in Tension Zone
195(1)
4.12.7 Check of Column Diagonal Stiffener for Panel Shear
196(1)
4.12.8 Shear Due to Vertical Forces
196(1)
4.12.9 Design with Haunches
196(1)
4.12.10 Beam-to-Beam Connections
196(1)
4.12.11 BS Provisions
197(1)
4.12.12 AISC Approach
197(2)
4.12.13 Limit States to Be Considered
199(1)
4.12.14 Rotational Stiffness
200(1)
4.12.15 Simplifying the Design
201(1)
4.12.16 Practical Advice
201(1)
4.12.17 Structural Integrity, Ductility, and Rotation Capacity
201(1)
4.12.18 Beam-to-Column End-Plate Design Example According to Eurocode
202(10)
4.12.18.1 Column Flange Thickness Check for Bolt Row 1
204(1)
4.12.18.2 Column Web Tension Check for Bolt Row 1
204(1)
4.12.18.3 Beam End-Plate Thickness Check for Bolt Row 1
205(1)
4.12.18.4 Beam Web Tension Check for Bolt Row 1
205(1)
4.12.18.5 Final Resistant Value for Bolt Row 1
205(1)
4.12.18.6 Column Flange Thickness Check for Bolt Row 2 Individually
205(1)
4.12.18.7 Column Web Tension Check for Bolt Row 2 Individually
206(1)
4.12.18.8 Beam End-Plate Thickness Check for Bolt Row 2 Individually
206(1)
4.12.18.9 Beam Web Tension Check for Bolt Row 2 Individually
206(1)
4.12.18.10 Column Flange Thickness Check for Bolt Row 2 in Group with Bolt Row 1
207(1)
4.12.18.11 Column Web Tension Check for Bolt Row 2 in Group with Bolt Row 1
207(1)
4.12.18.12 Beam End-Plate Thickness Check for Bolt Row 2 in Group with Bolt Row 1
207(1)
4.12.18.13 Beam Web Tension Check for Bolt Row 2 in Group with Bolt Row 1
207(1)
4.12.18.14 Final Resistant Value for Bolt Row 2
208(1)
4.12.18.15 Vertical Shear
208(1)
4.12.18.16 Web Panel Shear
209(1)
4.12.18.17 Column Web Resistance to Transverse Compression
209(1)
4.12.18.18 Stiffener Design
210(1)
4.12.18.19 Welds
210(1)
4.12.18.20 Rotational Stiffness
210(2)
4.13 Splice
212(5)
4.13.1 Calculation Model and Limit States
213(2)
4.13.2 Structural Integrity, Ductility, and Rotation Capacity
215(1)
4.13.3 Column Splice Design Example According to AS 4100
215(2)
4.13.3.1 Flanges
216(1)
4.13.3.2 Web
217(1)
4.13.3.3 Conclusions and Final Considerations
217(1)
4.13.3.4 Possible Alternative
217(1)
4.14 Brace Connections
217(13)
4.14.1 AISC Methods: UFM and KISS
220(7)
4.14.1.1 KISS Method
222(1)
4.14.1.2 Uniform Force Method
222(1)
4.14.1.3 UFM Variant 1
223(1)
4.14.1.4 UFM Variant 2
224(1)
4.14.1.5 UFM Variant 3
225(1)
4.14.1.6 UFM Adapted to Existing Connections
226(1)
4.14.2 Practical Recommendations
227(1)
4.14.3 Complex Brace Connection Example According to CSA S16
227(14)
4.14.3.1 Friction Connection for Brace
227(1)
4.14.3.2 Brace and Gusset Bearing
228(1)
4.14.3.3 Block Shear
228(1)
4.14.3.4 Channel Shear Lag
229(1)
4.14.3.5 Whitmore Section for Tension Resistance and Buckling of Gusset Plate
229(1)
4.14.3.6 UFM Forces
229(1)
4.14.3.7 Gusset-to-Column Shear Tab
229(1)
4.14.3.8 Gusset-to-Beam Weld
229(1)
4.14.3.9 Beam-to-Column Shear Tab
229(1)
4.14.3.10 Ductility and Structural Integrity
230(1)
4.15 Seated Connection
230(3)
4.16 Connections for Girts and Purlins
233(3)
4.17 Welded Hollow-Section Joints
236(1)
4.18 Connections in Composite (Steel-Concrete) Structures
236(1)
4.19 Joints with Bolts and Welds Working in Parallel
236(1)
4.20 Expansion Joints
237(1)
4.21 Perfect Hinges
238(1)
4.22 Rollers
239(1)
4.23 Rivets
240(1)
4.24 Seismic Connections
241(5)
4.24.1 Rigid End Plate
242(1)
4.24.2 Braces
243(1)
4.24.3 Eccentric Braces and "Links"
244(1)
4.24.4 Base Plate
244(2)
References
246(3)
5 Choosing the Type of Connection 249(4)
5.1 Priority to Fabricator and Erector
249(1)
5.2 Considerations of Pros and Cons of Some Types of Connections
249(1)
5.3 Shop Organization
250(2)
5.3.1 Plates or Sheets
250(1)
5.3.2 Concept of "Handling" One Piece
250(2)
5.4 Culture
252(1)
References
252(1)
6 Practical Notes on Fabrication 253(40)
6.1 Design Standardizations
253(1)
6.1.1 Materials
253(1)
6.1.2 Thicknesses
253(1)
6.1.3 Bolt Diameters
253(1)
6.2 Dimension of Bolt Holes
254(2)
6.2.1 Bolt Hole Clearance in Base Plates
255(1)
6.3 Erection
256(2)
6.3.1 Structure Lability
256(1)
6.3.2 Erection Sequence and Clearances
256(1)
6.3.3 Bolt Spacing and Interferences
257(1)
6.3.4 Positioning and Supports
257(1)
6.3.5 Holes or Welded Plates for Handling and Lifting
258(1)
6.4 Clearance Needed to Operate Tightening Wrenches
258(2)
6.4.1 Double Angles in Connections
259(1)
6.5 Bolt Spacing and Edge Distances
260(1)
6.6 Root Radius Encroachment
260(4)
6.7 Notches
264(1)
6.8 Bolt Tightening and Pretensioning
265(9)
6.8.1 Calibrated Wrench
266(1)
6.8.2 Turn of the Nut
266(4)
6.8.3 Direct Tension Indicators
270(1)
6.8.4 Twist-Off Type Bolts
271(2)
6.8.5 Hydraulic Wrenches
273(1)
6.9 Washers
274(3)
6.9.1 Tapered (Beveled) Washers
275(2)
6.9.2 Vibrations
277(1)
6.10 Dimensions of Screws, Nuts, and Washers
277(1)
6.10.1 Depth of Bolt Heads and Nuts
277(1)
6.10.2 Washer Width and Thickness
277(1)
6.11 Reuse of Bolts
278(1)
6.12 Bolt Classes
279(1)
6.13 Shims
280(1)
6.14 Galvanization
281(1)
6.14.1 Tubes
281(1)
6.14.2 Plate Welded over Profiles as Reinforcement
281(1)
6.14.3 Base Plates
282(1)
6.15 Other Finishes After Fabrication
282(1)
6.16 Camber
283(1)
6.17 Grout in Base Plates
284(2)
6.18 Graphical Representation of Bolts and Connections
286(1)
6.19 Field Welds
287(1)
6.20 Skewed Joints
287(4)
References
291(2)
7 Connection Examples 293(62)
Index 355


Additional Resources